Allen T. M. (1994). Long-circulating (sterically stabilized) liposomes for targeted drug delivery. Trends Pharmacol. Sci.15, 215–220. 10.1016/0165-6147(94)90314-X [PubMed] [CrossRef] [Google Scholar]
Allen T. M., Cullis P. R. (2004). Drug delivery systems: entering the mainstream. Science303, 1818–1822. 10.1126/science.1095833 [PubMed] [CrossRef] [Google Scholar]
Allen T. M., Cullis P. R. (2013). Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv. Rev. 65, 36–48. 10.1016/j.addr.2012.09.037 [PubMed] [CrossRef] [Google Scholar]
Andresen T. L., Davidsen J., Begtrup M., Mouritsen O. G., Jørgensen K. (2004). Enzymatic release of antitumor ether lipids by specific phospholipase A2 activation of liposome-forming prodrugs. J. Med. Chem.47, 1694–1703. 10.1021/jm031029r [PubMed] [CrossRef] [Google Scholar]
Antohe F., Lin L., Kao G. Y., Poznansky M. J., Allen T. M. (2004). Transendothelial movement of liposomes in vitro mediated by cancer cells, neutrophils or histamine. J. Liposome Res.14, 1–25. 10.1081/LPR-120039660 [PubMed] [CrossRef] [Google Scholar]
Antoni L., Nuding S., Wehkamp J., Stange E. F. (2014). Intestinal barrier in inflammatory bowel disease. World J. Gastroenterol.20, 1165–1179. 10.3748/wjg.v20.i5.1165 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Awada A., Bondarenko I. N., Bonneterre J., Nowara E., Ferrero J. M., Bakshi A. V., et al. . (2014). A randomized controlled phase II trial of a novel composition of paclitaxel embedded into neutral and cationic lipids targeting tumor endothelial cells in advanced triple-negative breast cancer (TNBC). Ann. Oncol.25, 824–831. 10.1093/annonc/mdu025 [PubMed] [CrossRef] [Google Scholar]
Bendas G. (2001). Immunoliposomes: a promising approach to targeting cancer therapy. BioDrugs15, 215–224. 10.2165/00063030-200115040-00002 [PubMed] [CrossRef] [Google Scholar]
Bibi S., Lattmann E., Mohammed A. R., Perrie Y. (2012). Trigger release liposome systems: local and remote controlled delivery?J. Microencapsul.29, 262–276. 10.3109/02652048.2011.646330 [PubMed] [CrossRef] [Google Scholar]
Campbell R. B., Fukumura D., Brown E. B., Mazzola L. M., Izumi Y., Jain R. K., et al. . (2002). Cationic charge determines the distribution of liposomes between the vascular and extravascular compartments of tumors. Cancer Res.62, 6831–6836. [PubMed] [Google Scholar]
Campbell R. B., Ying B., Kuesters G. M., Hemphill R. (2009). Fighting cancer: from the bench to bedside using second generation cationic liposomal therapeutics. J. Pharm. Sci.98, 411–429. 10.1002/jps.21458 [PubMed] [CrossRef] [Google Scholar]
Carlson M., Raab Y., Peterson C., Hällgren R., Venge P. (1999). Increased intraluminal release of eosinophil granule proteins EPO, ECP, EPX, and cytokines in ulcerative colitis and proctitis in segmental perfusion. Am. J. Gastroenterol.94, 1876–1883. 10.1111/j.1572-0241.1999.01223.x [PubMed] [CrossRef] [Google Scholar]
Chandrasekar P. (2008). Amphotericin B lipid complex: treatment of invasive fungal infections in patients refractory to or intolerant of amphotericin B deoxycholate. Ther. Clin. Risk Manag.4, 1285–1294. [PMC free article] [PubMed] [Google Scholar]
Chang H. I., Yeh M. K. (2012). Clinical development of liposome-based drugs: formulation, characterization, and therapeutic efficacy. Int. J. Nanomedicine7, 49–60. 10.2147/IJN.S26766 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Chang T. C., Shiah H. S., Yang C. H., Yeh K. H., Cheng A. L., Shen B. N., et al. . (2015). Phase I study of nanoliposomal irinotecan (PEP02) in advanced solid tumor patients. Cancer Chemother. Pharmacol.75, 579–586. 10.1007/s00280-014-2671-x [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Charron D. M., Chen J., Zheng G. (2015). Theranostic lipid nanoparticles for cancer medicine. Cancer Treat. Res.166, 103–127. 10.1007/978-3-319-16555-4_5 [PubMed] [CrossRef] [Google Scholar]
Chrai S. S., Murari R., Ahmad I. (2002). Liposomes (a review) part two: drug delivery systems. BioPharm17, 40–43. [Google Scholar]
Clancy J. P., Dupont L., Konstan M. W., Billings J., Fustik S., Goss C. H., et al. . (2013). Phase II studies of nebulised Arikace in CF patients with Pseudomonas aeruginosa infection. Thorax68, 818–825. 10.1136/thoraxjnl-2012-202230 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Coco R., Plapied L., Pourcelle V., Jérôme C., Brayden D. J., Schneider Y. J., et al. . (2013). Drug delivery to inflamed colon by nanoparticles: comparison of different strategies. Int. J. Pharm.440, 3–12. 10.1016/j.ijpharm.2012.07.017 [PubMed] [CrossRef] [Google Scholar]
Cole J. T., Holland N. B. (2015). Multifunctional nanoparticles for use in theranostic applications. Drug Deliv. Transl. Res.5, 295–309. 10.1007/s13346-015-0218-2 [PubMed] [CrossRef] [Google Scholar]
Cullis P. R., Chonn A., Semple S. C. (1998). Interactions of liposomes and lipid-based carrier systems with blood proteins: relation to clearance behaviour in vivo. Adv. Drug Deliv. Rev.32, 3–17. [PubMed] [Google Scholar]
Dams E. T., Laverman P., Oyen W. J., Storm G., Scherphof G. L., van Der Meer J. W., et al. . (2000). Accelerated blood clearance and altered biodistribution of repeated injections of sterically stabilized liposomes. J. Pharmacol. Exp. Ther.292, 1071–1079. [PubMed] [Google Scholar]
Dark G. G., Calvert A. H., Grimshaw R., Poole C., Swenerton K., Kaye S., et al. . (2005). Randomized trial of two intravenous schedules of the topoisomerase I inhibitor liposomal lurtotecan in women with relapsed epithelial ovarian cancer: a trial of the national cancer institute of Canada clinical trials group. J. Clin. Oncol.23, 1859–1866. 10.1200/JCO.2005.02.028 [PubMed] [CrossRef] [Google Scholar]
Dempsey P. W., Allison M. E., Akkaraju S., Goodnow C. C., Fearon D. T. (1996). C3d of complement as a molecular adjuvant: bridging innate and acquired immunity. Science271, 348–350. 10.1126/science.271.5247.348 [PubMed] [CrossRef] [Google Scholar]
Deshpande P. P., Biswas S., Torchilin V. P. (2013). Current trends in the use of liposomes for tumor targeting. Nanomedicine (Lond).8, 1509–1528. 10.2217/nnm.13.118 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Dicheva B. M., ten Hagen T. L., Li L., Schipper D., Seynhaeve A. L., van Rhoon G. C., et al. . (2013). Cationic thermosensitive liposomes: a novel dual targeted heat-triggered drug delivery approach for endothelial and tumor cells. Nano Lett.13, 2324–2331. 10.1021/nl3014154 [PubMed] [CrossRef] [Google Scholar]
Dicheva B. M., ten Hagen T. L., Schipper D., Seynhaeve A. L., van Rhoon G. C., Eggermont A. M., et al. . (2014). Targeted and heat-triggered doxorubicin delivery to tumors by dual targeted cationic thermosensitive liposomes. J. Control. Release195, 37–48. 10.1016/j.jconrel.2014.07.058 [PubMed] [CrossRef] [Google Scholar]
Ding B. S., Dziubla T., Shuvaev V. V., Muro S., Muzykantov V. R. (2006). Advanced drug delivery systems that target the vascular endothelium. Mol. Interv.6, 98–112. 10.1124/mi.6.2.7 [PubMed] [CrossRef] [Google Scholar]
Felgner P. L., Gadek T. R., Holm M., Roman R., Chan H. W., Wenz M., et al. . (1987). Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl. Acad. Sci. U.S.A.84, 7413–7417. 10.1073/pnas.84.21.7413 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Ferrari M. (2005). Nanovector therapeutics. Curr. Opin. Chem. Biol.9, 343–346. 10.1016/j.cbpa.2005.06.001 [PubMed] [CrossRef] [Google Scholar]
Fetterly G. J., Grasela T. H., Sherman J. W., Dul J. L., Grahn A., Lecomte D., et al. . (2008). Pharmacokinetic/pharmacodynamic modeling and simulation of neutropenia during phase I development of liposome-entrapped paclitaxel. Clin. Cancer Res.14, 5856–5863. 10.1158/1078-0432.CCR-08-1046 [PubMed] [CrossRef] [Google Scholar]
Gabizon A. A., Barenholz Y., Bialer M. (1993). Prolongation of the circulation time of doxorubicin encapsulated in liposomes containing a polyethylene glycol-derivatized phospholipid: pharmacokinetic studies in rodents and dogs. Pharm. Res.10, 703–708. 10.1023/A:1018907715905 [PubMed] [CrossRef] [Google Scholar]
Gabizon A., Catane R., Uziely B., Kaufman B., Safra T., Cohen R., et al. . (1994). Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Res.54, 987–992. [PubMed] [Google Scholar]
Gabizon A., Chisin R., Amselem S., Druckmann S., Cohen R., Goren D., et al. . (1991). Pharmacokinetic and imaging studies in patients receiving a formulation of liposome-associated adriamycin. Br. J. Cancer64, 1125–1132. 10.1038/bjc.1991.476 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Gabizon A., Dagan A., Goren D., Barenholz Y., Fuks Z. (1982). Liposomes as in vivo carriers of adriamycin: reduced cardiac uptake and preserved antitumor activity in mice. Cancer Res.42, 4734–4739. [PubMed] [Google Scholar]
Gabizon A., Horowitz A. T., Goren D., Tzemach D., Shmeeda H., Zalipsky S. (2003). In vivo fate of folate-targeted polyethylene-glycol liposomes in tumor-bearing mice. Clin. Cancer Res.9, 6551–6559. [PubMed] [Google Scholar]
Gabizon A., Tzemach D., Mak L., Bronstein M., Horowitz A. T. (2002). Dose dependency of pharmacokinetics and therapeutic efficacy of pegylated liposomal doxorubicin (DOXIL) in murine models. J. Drug Target. 10, 539–548. 10.1080/1061186021000072447 [PubMed] [CrossRef] [Google Scholar]
Geng S., Yang B., Wang G., Qin G., Wada S., Wang J. Y. (2014). Two cholesterol derivative-based PEGylated liposomes as drug delivery system, study on pharmacokinetics and drug delivery to retina. Nanotechnology25:275103. 10.1088/0957-4484/25/27/275103 [PubMed] [CrossRef] [Google Scholar]
Giannella M., Ercolani G., Cristini F., Morelli M., Bartoletti M., Bertuzzo V., et al. . (2015). High-dose weekly liposomal amphotericin b antifungal prophylaxis in patients undergoing liver transplantation: a prospective phase II trial. Transplantation99, 848–854. 10.1097/TP.0000000000000393 [PubMed] [CrossRef] [Google Scholar]
Gross N., Ranjbar M., Evers C., Hua J., Martin G., Schulze B., et al. . (2013). Choroidal neovascularization reduced by targeted drug delivery with cationic liposome-encapsulated paclitaxel or targeted photodynamic therapy with verteporfin encapsulated in cationic liposomes. Mol. Vis.19, 54–61. [PMC free article] [PubMed] [Google Scholar]
Guo X., Szoka F. C., Jr. (2003). Chemical approaches to triggerable lipid vesicles for drug and gene delivery. Acc. Chem. Res.36, 335–341. 10.1021/ar9703241 [PubMed] [CrossRef] [Google Scholar]
Han X. J., Wei Y. F., Wan Y. Y., Jiang L. P., Zhang J. F., Xin H. B. (2014). Development of a novel liposomal nanodelivery system for bioluminescence imaging and targeted drug delivery in ErbB2-overexpressing metastatic ovarian carcinoma. Int. J. Mol. Med.34, 1225–1232. 10.3892/ijmm.2014.1922 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Hashizume H., Baluk P., Morikawa S., McLean J. W., Thurston G., Roberge S., et al. . (2000). Openings between defective endothelial cells explain tumor vessel leakiness. Am. J. Pathol.156, 1363–1380. 10.1016/S0002-9440(10)65006-7 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Hua S. (2013). Targeting sites of inflammation: intercellular adhesion molecule-1 as a target for novel inflammatory therapies. Front. Pharmacol.4:127. 10.3389/fphar.2013.00127 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Hua S., Cabot P. J. (2013). Targeted nanoparticles that mimic immune cells in pain control inducing analgesic and anti-inflammatory actions: a potential novel treatment of acute and chronic pain condition. Pain Physician. 16, E199–E216. [PubMed] [Google Scholar]
Hua S., Marks E., Schneider J. J., Keely S. (2015). Advances in oral nano-delivery systems for colon targeted drug delivery in inflammatory bowel disease: selective targeting to diseased versus healthy tissue. Nanomedicine11, 1117–1132. 10.1016/j.nano.2015.02.018 [PubMed] [CrossRef] [Google Scholar]
Hua S., Wu S. Y. (2013). The use of lipid-based nanocarriers for targeted pain therapies. Front. Pharmacol.4:143. 10.3389/fphar.2013.00143 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Immordino M. L., Dosio F., Cattel L. (2006). Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int. J. Nanomedicine1, 297–315. [PMC free article] [PubMed] [Google Scholar]
Ishida T., Harada M., Wang X. Y., Ichihara M., Irimura K., Kiwada H. (2005). Accelerated blood clearance of PEGylated liposomes following preceding liposome injection: effects of lipid dose and PEG surface-density and chain length of the first-dose liposomes. J. Control. Release105, 305–317. 10.1016/j.jconrel.2005.04.003 [PubMed] [CrossRef] [Google Scholar]
Ishida T., Harashima H., Kiwada H. (2001a). Interactions of liposomes with cells in vitro and in vivo: opsonins and receptors. Curr. Drug Metab.2, 397–409. 10.2174/1389200013338306 [PubMed] [CrossRef] [Google Scholar]
Ishida T., Ichihara M., Wang X., Kiwada H. (2006a). Spleen plays an important role in the induction of accelerated blood clearance of PEGylated liposomes. J. Control. Release115, 243–250. 10.1016/j.jconrel.2006.08.001 [PubMed] [CrossRef] [Google Scholar]
Ishida T., Ichihara M., Wang X., Yamamoto K., Kimura J., Majima E., et al. . (2006b). Injection of PEGylated liposomes in rats elicits PEG-specific IgM, which is responsible for rapid elimination of a second dose of PEGylated liposomes. J. Control. Release112, 15–25. 10.1016/j.jconrel.2006.01.005 [PubMed] [CrossRef] [Google Scholar]
Ishida T., Kirchmeier M. J., Moase E. H., Zalipsky S., Allen T. M. (2001b). Targeted delivery and triggered release of liposomal doxorubicin enhances cytotoxicity against human B lymphoma cells. Biochim. Biophys. Acta1515, 144–158. 10.1016/S0005-2736(01)00409-6 [PubMed] [CrossRef] [Google Scholar]
Ishida T., Kiwada H. (2008). Accelerated blood clearance (ABC) phenomenon upon repeated injection of PEGylated liposomes. Int. J. Pharm.354, 56–62. 10.1016/j.ijpharm.2007.11.005 [PubMed] [CrossRef] [Google Scholar]
Ishida T., Masuda K., Ichikawa T., Ichihara M., Irimura K., Kiwada H. (2003). Accelerated clearance of a second injection of PEGylated liposomes in mice. Int. J. Pharm.255, 167–174. 10.1016/S0378-5173(03)00085-1 [PubMed] [CrossRef] [Google Scholar]
Jaafar-Maalej C., Elaissari A., Fessi H. (2012). Lipid-based carriers: manufacturing and applications for pulmonary route. Expert Opin. Drug Deliv.9, 1111–1127. 10.1517/17425247.2012.702751 [PubMed] [CrossRef] [Google Scholar]
Jahn F., Jordan K., Behlendorf T., Globig C., Schmoll H. J., Müller-Tidow C., et al. . (2015). Safety and efficacy of liposomal cytarabine in the treatment of neoplastic meningitis. Oncology89, 137–142. 10.1159/000380913 [PubMed] [CrossRef] [Google Scholar]
Kirpotin D. B., Drummond D. C., Shao Y., Shalaby M. R., Hong K., Nielsen U. B., et al. . (2006). Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res.66, 6732–6740. 10.1158/0008-5472.CAN-05-4199 [PubMed] [CrossRef] [Google Scholar]
Kirpotin D., Park J. W., Hong K., Zalipsky S., Li W. L., Carter P., et al. . (1997). Sterically stabilized anti-HER2 immunoliposomes: design and targeting to human breast cancer cells in vitro. Biochem. Mosc.36, 66–75. 10.1021/bi962148u [PubMed] [CrossRef] [Google Scholar]
Klimuk S. K., Semple S. C., Scherrer P., Hope M. J. (1999). Contact hypersensitivity: a simple model for the characterization of disease-site targeting by liposomes. Biochim. Biophys. Acta1417, 191–201. 10.1016/S0005-2736(98)00261-2 [PubMed] [CrossRef] [Google Scholar]
Koning G. A., Storm G. (2003). Targeted drug delivery systems for the intracellular delivery of macromolecular drugs. Drug Discov. Today8, 482–483. 10.1016/S1359-6446(03)02699-0 [PubMed] [CrossRef] [Google Scholar]
Kono K. (2001). Thermosensitive polymer-modified liposomes. Adv. Drug Deliv. Rev.53, 307–319. 10.1016/S0169-409X(01)00204-6 [PubMed] [CrossRef] [Google Scholar]
Kraft J. C., Freeling J. P., Wang Z., Ho R. J. (2014). Emerging research and clinical development trends of liposome and lipid nanoparticle drug delivery systems. J. Pharm. Sci.103, 29–52. 10.1002/jps.23773 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Kunstfeld R., Wickenhauser G., Michaelis U., Teifel M., Umek W., Naujoks K., et al. . (2003). Paclitaxel encapsulated in cationic liposomes diminishes tumor angiogenesis and melanoma growth in a “humanized” SCID mouse model. J. Invest. Dermatol.120, 476–482. 10.1046/j.1523-1747.2003.12057.x [PubMed] [CrossRef] [Google Scholar]
Larsson J. M., Karlsson H., Sjövall H., Hansson G. C. (2009). A complex, but uniform O-glycosylation of the human MUC2 mucin from colonic biopsies analyzed by nanoLC/MSn. Glycobiology19, 756–766. 10.1093/glycob/cwp048 [PubMed] [CrossRef] [Google Scholar]
Laverman P., Boerman O. C., Oyen W. J., Dams E. T., Storm G., Corstens F. H. (1999). Liposomes for scintigraphic detection of infection and inflammation. Adv. Drug Deliv. Rev.37, 225–235. [PubMed] [Google Scholar]
Laverman P., Carstens M. G., Storm G., Moghimi S. M. (2001). Recognition and clearance of methoxypoly(ethyleneglycol)2000-grafted liposomes by macrophages with enhanced phagocytic capacity. Implications in experimental and clinical oncology. Biochim. Biophys. Acta1526, 227–229. 10.1016/S0304-4165(01)00142-8 [PubMed] [CrossRef] [Google Scholar]
Löhr J. M., Haas S. L., Bechstein W. O., Bodoky G., Cwiertka K., Fischbach W., et al. . (2012). Cationic liposomal paclitaxel plus gemcitabine or gemcitabine alone in patients with advanced pancreatic cancer: a randomized controlled phase II trial. Ann. Oncol.23, 1214–1222. 10.1093/annonc/mdr379 [PubMed] [CrossRef] [Google Scholar]
Lv H., Zhang S., Wang B., Cui S., Yan J. (2006). Toxicity of cationic lipids and cationic polymers in gene delivery. J. Control. Release114, 100–109. 10.1016/j.jconrel.2006.04.014 [PubMed] [CrossRef] [Google Scholar]
Lyass O., Uziely B., Ben-Yosef R., Tzemach D., Heshing N. I., Lotem M., et al. . (2000). Correlation of toxicity with pharmacokinetics of pegylated liposomal doxorubicin (Doxil) in metastatic breast carcinoma. Cancer89, 1037–1047. 10.1002/1097-0142(20000901)89:5<1037::AID-CNCR13>3.0.CO;2-Z [PubMed] [CrossRef] [Google Scholar]
Mangala L. S., Han H. D., Lopez-Berestein G., Sood A. K. (2009). Liposomal siRNA for ovarian cancer. Methods Mol. Biol.555, 29–42. 10.1007/978-1-60327-295-7_3 [PubMed] [CrossRef] [Google Scholar]
Metselaar J. M., Storm G. (2005). Liposomes in the treatment of inflammatory disorders. Expert Opin. Drug Deliv.465–76 10.1517/17425247.2.3.465 [PubMed] [CrossRef] [Google Scholar]
Moghimi S. M., Hamad I., Andresen T. L., Jørgensen K., Szebeni J. (2006). Methylation of the phosphate oxygen moiety of phospholipid-methoxy(polyethylene glycol) conjugate prevents PEGylated liposome-mediated complement activation and anaphylatoxin production. FASEB J.20, 2591–2593. 10.1096/fj.06-6186fje [PubMed] [CrossRef] [Google Scholar]
Moghimi S. M., Hunter A. C. (2001). Capture of stealth nanoparticles by the body’s defences. Crit. Rev. Ther. Drug Carrier Syst.18, 527–550. 10.1615/CritRevTherDrugCarrierSyst.v18.i6.30 [PubMed] [CrossRef] [Google Scholar]
Moghimi S. M., Szebeni J. (2003). Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog. Lipid Res.42, 463–478. 10.1016/S0163-7827(03)00033-X [PubMed] [CrossRef] [Google Scholar]
Monteiro N., Martins A., Reis R. L., Neves N. M. (2014). Liposomes in tissue engineering and regenerative medicine. J. R. Soc. Interface11:20140459. 10.1098/rsif.2014.0459 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Murday J. S., Siegel R. W., Stein J., Wright J. F. (2009). Translational nanomedicine: status assessment and opportunities. Nanomedicine5, 251–273. 10.1016/j.nano.2009.06.001 [PubMed] [CrossRef] [Google Scholar]
Narang A. S., Chang R. K., Hussain M. A. (2013). Pharmaceutical development and regulatory considerations for nanoparticles and nanoparticulate drug delivery systems. J. Pharm. Sci.102, 3867–3882. 10.1002/jps.23691 [PubMed] [CrossRef] [Google Scholar]
Needham D., Anyarambhatla G., Kong G., Dewhirst M. W. (2000). A new temperature-sensitive liposome for use with mild hyperthermia: characterization and testing in a human tumor xenograft model. Cancer Res.60, 1197–1201. [PubMed] [Google Scholar]
Nehoff H., Parayath N. N., Domanovitch L., Taurin S., Greish K. (2014). Nanomedicine for drug targeting: strategies beyond the enhanced permeability and retention effect. Int. J. Nanomedicine9, 2539–2555. 10.2147/IJN.S47129 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Ning Y. M., He K., Dagher R., Sridhara R., Farrell A. T., Justice R., et al. . (2007). Liposomal doxorubicin in combination with bortezomib for relapsed or refractory multiple myeloma. Oncology (Williston Park)21, 1503–1508. discussion: 11, 13, 16 passim. [PubMed] [Google Scholar]
Noble C. O., Kirpotin D. B., Hayes M. E., Mamot C., Hong K., Park J. W., et al. . (2004). Development of ligand-targeted liposomes for cancer therapy. Expert Opin. Ther. Targets8, 335–353. 10.1517/14728222.8.4.335 [PubMed] [CrossRef] [Google Scholar]
Northfelt D. W., Martin F. J., Working P., Volberding P. A., Russell J., Newman M., et al. . (1996). Doxorubicin encapsulated in liposomes containing surface-bound polyethylene glycol: pharmacokinetics, tumor localization, and safety in patients with AIDS-related Kaposi’s sarcoma. J. Clin. Pharmacol.36, 55–63. 10.1002/j.1552-4604.1996.tb04152.x [PubMed] [CrossRef] [Google Scholar]
Offner F., Krcmery V., Boogaerts M., Doyen C., Engelhard D., Ribaud P., et al. . (2004). Liposomal nystatin in patients with invasive aspergillosis refractory to or intolerant of amphotericin B. Antimicrob. Agents Chemother.48, 4808–4812. 10.1128/AAC.48.12.4808-4812.2004 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Oku N., Namba Y. (1994). Long-circulating liposomes. Crit. Rev. Ther. Drug Carrier Syst.11, 231–270. [PubMed] [Google Scholar]
Olivier K. N., Shaw P. A., Glaser T. S., Bhattacharyya D., Fleshner M., Brewer C. C., et al. . (2014). Inhaled amikacin for treatment of refractory pulmonary nontuberculous mycobacterial disease. Ann. Am. Thorac. Soc.11, 30–35. 10.1513/AnnalsATS.201307-231OC [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Ozpolat B., Lopez-Berestein G., Adamson P., Fu C. J., Williams A. H. (2003). Pharmacokinetics of intravenously administered liposomal all-trans-retinoic acid (ATRA) and orally administered ATRA in healthy volunteers. J. Pharm. Pharm. Sci.6, 292–301. [PubMed] [Google Scholar]
Park J. W., Hong K., Kirpotin D. B., Colbern G., Shalaby R., Baselga J., et al. . (2002). Anti-HER2 immunoliposomes: enhanced efficacy attributable to targeted delivery. Clin. Cancer Res.8, 1172–1181. [PubMed] [Google Scholar]
Peterson C. G., Eklund E., Taha Y., Raab Y., Carlson M. (2002). A new method for the quantification of neutrophil and eosinophil cationic proteins in feces: establishment of normal levels and clinical application in patients with inflammatory bowel disease. Am. J. Gastroenterol.97, 1755–1762. 10.1111/j.1572-0241.2002.05837.x [PubMed] [CrossRef] [Google Scholar]
Ponce A. M., Vujaskovic Z., Yuan F., Needham D., Dewhirst M. W. (2006). Hyperthermia mediated liposomal drug delivery. Int. J. Hyperthermia22, 205–213. 10.1080/02656730600582956 [PubMed] [CrossRef] [Google Scholar]
Poste G., Papahadjopoulos D., Vail W. J. (1976). Lipid vesicles as carriers for introducing biologically active materials into cells. Methods Cell Biol.14, 33–71. 10.1016/S0091-679X(08)60468-9 [PubMed] [CrossRef] [Google Scholar]
Puri A., Loomis K., Smith B., Lee J. H., Yavlovich A., Heldman E., et al. . (2009). Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Crit. Rev. Ther. Drug Carrier Syst.26, 523–580. 10.1615/CritRevTherDrugCarrierSyst.v26.i6.10 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Rahman A. M., Yusuf S. W., Ewer M. S. (2007). Anthracycline-induced cardiotoxicity and the cardiac-sparing effect of liposomal formulation. Int. J. Nanomedicine2, 567–583. [PMC free article] [PubMed] [Google Scholar]
Ran S., Downes A., Thorpe P. E. (2002). Increased exposure of anionic phospholipids on the surface of tumor blood vessels. Cancer Res.62, 6132–6140. [PubMed] [Google Scholar]
Riehemann K., Schneider S. W., Luger T. A., Godin B., Ferrari M., Fuchs H. (2009). Nanomedicine–challenge and perspectives. Angew. Chem. Int. Ed Engl.48, 872–897. 10.1002/anie.200802585 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Rip J., Chen L., Hartman R., van den Heuvel A., Reijerkerk A., van Kregten J., et al. . (2014). Glutathione PEGylated liposomes: pharmacokinetics and delivery of cargo across the blood-brain barrier in rats. J. Drug Target.22, 460–467. 10.3109/1061186X.2014.888070 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Sapra P., Allen T. M. (2003). Ligand-targeted liposomal anticancer drugs. Prog. Lipid Res.42, 439–462. 10.1016/S0163-7827(03)00032-8 [PubMed] [CrossRef] [Google Scholar]
Sawant R. R., Torchilin V. P. (2012). Challenges in development of targeted liposomal therapeutics. AAPS J.14, 303–315. 10.1208/s12248-012-9330-0 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Schmitt C. J., Dietrich S., Ho A. D., Witzens-Harig M. (2012). Replacement of conventional doxorubicin by pegylated liposomal doxorubicin is a safe and effective alternative in the treatment of non-Hodgkin’s lymphoma patients with cardiac risk factors. Ann. Hematol.91, 391–397. 10.1007/s00277-011-1308-y [PubMed] [CrossRef] [Google Scholar]
Seiden M. V., Muggia F., Astrow A., Matulonis U., Campos S., Roche M., et al. . (2004). A phase II study of liposomal lurtotecan (OSI-211) in patients with topotecan resistant ovarian cancer. Gynecol. Oncol.93, 229–232. 10.1016/j.ygyno.2003.12.037 [PubMed] [CrossRef] [Google Scholar]
Senior J. H. (1987). Fate and behavior of liposomes in vivo: a review of controlling factors. Crit. Rev. Ther. Drug Carrier Syst.3, 123–193. [PubMed] [Google Scholar]
Storm G., ten Kate M. T., Working P. K., Bakker-Woudenberg I. A. (1998). Doxorubicin entrapped in sterically stabilized liposomes: effects on bacterial blood clearance capacity of the mononuclear phagocyte system. Clin. Cancer Res.4, 111–115. [PubMed] [Google Scholar]
Suenaga M., Mizunuma N., Matsusaka S., Shinozaki E., Ozaka M., Ogura M., et al. . (2015). Phase II study of reintroduction of oxaliplatin for advanced colorectal cancer in patients previously treated with oxaliplatin and irinotecan: RE-OPEN study. Drug Des. Devel. Ther.9, 3099–3108. 10.2147/DDDT.S85567 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Szebeni J. (2005). Complement activation-related pseudoallergy: a new class of drug-induced acute immune toxicity. Toxicology216, 106–121. 10.1016/j.tox.2005.07.023 [PubMed] [CrossRef] [Google Scholar]
Szebeni J., Alving C. R., Rosivall L., Bünger R., Baranyi L., Bedöcs P., et al. . (2007). Animal models of complement-mediated hypersensitivity reactions to liposomes and other lipid-based nanoparticles. J. Liposome Res.17, 107–117. 10.1080/08982100701375118 [PubMed] [CrossRef] [Google Scholar]
Szebeni J., Barenholz Y. (2009). Adverse immune effects of liposomes: complement activation, immunogenicity and immune suppression, in Harnessing Biomaterials for Nanomedicine: Preparation, Toxicity and Applications, ed P. S. Publishing (Singapore: Pan Stanford Publishing; ), 1–19. [Google Scholar]
Szebeni J., Fontana J. L., Wassef N. M., Mongan P. D., Morse D. S., Dobbins D. E., et al. . (1999). Hemodynamic changes induced by liposomes and liposome-encapsulated hemoglobin in pigs: a model for pseudoallergic cardiopulmonary reactions to liposomes. Role of complement and inhibition by soluble CR1 and anti-C5a antibody. Circulation99, 2302–2309. 10.1161/01.CIR.99.17.2302 [PubMed] [CrossRef] [Google Scholar]
Szebeni J., Moghimi S. M. (2009). Liposome triggering of innate immune responses: a perspective on benefits and adverse reactions. J. Liposome Res.19, 85–90. 10.1080/08982100902792855 [PubMed] [CrossRef] [Google Scholar]
Teli M. K., Mutalik S., Rajanikant G. K. (2010). Nanotechnology and nanomedicine: going small means aiming big. Curr. Pharm. Des.16, 1882–1892. 10.2174/138161210791208992 [PubMed] [CrossRef] [Google Scholar]
Tinkle S., McNeil S. E., Mühlebach S., Bawa R., Borchard G., Barenholz Y. C., et al. . (2014). Nanomedicines: addressing the scientific and regulatory gap. Ann. N.Y. Acad. Sci.1313, 35–56. 10.1111/nyas.12403 [PubMed] [CrossRef] [Google Scholar]
Tirosh B., Khatib N., Barenholz Y., Nissan A., Rubinstein A. (2009). Transferrin as a luminal target for negatively charged liposomes in the inflamed colonic mucosa. Mol. Pharm.6, 1083–1091. 10.1021/mp9000926 [PubMed] [CrossRef] [Google Scholar]
Torchilin V. P. (1994). Immunoliposomes and PEGylated immunoliposomes: possible use for targeted delivery of imaging agents. Immunomethods4, 244–258. 10.1006/immu.1994.1027 [PubMed] [CrossRef] [Google Scholar]
Torchilin V. P., Klibanov A. L., Huang L., O’Donnell S., Nossiff N. D., Khaw B. A. (1992). Targeted accumulation of polyethylene glycol-coated immunoliposomes in infarcted rabbit myocardium. FASEB J.6, 2716–2719. [PubMed] [Google Scholar]
Ulrich A. S. (2002). Biophysical aspects of using liposomes as delivery vehicles. Biosci. Rep.22, 129–150. 10.1023/A:1020178304031 [PubMed] [CrossRef] [Google Scholar]
Vingerhoeds M. H., Storm G., Crommelin D. J. (1994). Immunoliposomes in vivo. Immunomethods4, 259–272. 10.1006/immu.1994.1028 [PubMed] [CrossRef] [Google Scholar]
Wang X., Song Y., Su Y., Tian Q., Li B., Quan J., et al. (2015). Are PEGylated liposomes better than conventional liposomes? A special case for vincristine. Drug Deliv.29, 1–9. 10.3109/10717544.2015.1027015 [PubMed] [CrossRef] [Google Scholar]
Webb M. S., Saxon D., Wong F. M., Lim H. J., Wang Z., Bally M. B., et al. . (1998). Comparison of different hydrophobic anchors conjugated to poly(ethylene glycol): effects on the pharmacokinetics of liposomal vincristine. Biomembranes1372, 272–282. 10.1016/S0005-2736(98)00077-7 [PubMed] [CrossRef] [Google Scholar]
Wetzler M., Thomas D. A., Wang E. S., Shepard R., Ford L. A., Heffner T. L., et al. . (2013). Phase I/II trial of nanomolecular liposomal annamycin in adult patients with relapsed/refractory acute lymphoblastic leukemia. Clin. Lymphoma Myeloma Leuk.13, 430–434. 10.1016/j.clml.2013.03.015 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Willis M., Forssen E. (1998). Ligand-targeted liposomes. Adv. Drug Deliv. Rev.29, 249–271. 10.1016/S0169-409X(97)00083-5 [PubMed] [CrossRef] [Google Scholar]
Wu J., Lee A., Lu Y., Lee R. J. (2007). Vascular targeting of doxorubicin using cationic liposomes. Int. J. Pharm.337, 329–335. 10.1016/j.ijpharm.2007.01.003 [PubMed] [CrossRef] [Google Scholar]
Yarmolenko P. S., Zhao Y., Landon C., Spasojevic I., Yuan F., Needham D., et al. . (2010). Comparative effects of thermosensitive doxorubicin-containing liposomes and hyperthermia in human and murine tumours. Int. J. Hyperthermia26, 485–498. 10.3109/02656731003789284 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Zamboni W. C., Ramalingam S., Friedland D. M., Edwards R. P., Stoller R. G., Strychor S., et al. . (2009). Phase I and pharmacokinetic study of pegylated liposomal CKD-602 in patients with advanced malignancies. Clin. Cancer Res.15, 1466–1472. 10.1158/1078-0432.CCR-08-1405 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Zhang H., Wang G., Yang H. (2011). Drug delivery systems for differential release in combination therapy. Expert Opin. Drug Deliv.8, 171–190. 10.1517/17425247.2011.547470 [PubMed] [CrossRef] [Google Scholar]
Zhang J. A., Anyarambhatla G., Ma L., Ugwu S., Xuan T., Sardone T., et al. . (2005). Development and characterization of a novel Cremophor EL free liposome-based paclitaxel (LEP-ETU) formulation. Eur. J. Pharm. Biopharm.59, 177–187. 10.1016/j.ejpb.2004.06.009 [PubMed] [CrossRef] [Google Scholar]
Zhang J. A., Xuan T., Parmar M., Ma L., Ugwu S., Ali S., et al. . (2004). Development and characterization of a novel liposome-based formulation of SN-38. Int. J. Pharm.270, 93–107. 10.1016/j.ijpharm.2003.10.015 [PubMed] [CrossRef] [Google Scholar]
Zhang L., Gu F. X., Chan J. M., Wang A. Z., Langer R. S., Farokhzad O. C. (2008). Nanoparticles in medicine: therapeutic applications and developments. Clin. Pharmacol. Ther.83, 761–769. 10.1038/sj.clpt.6100400 [PubMed] [CrossRef] [Google Scholar]
Zou Y., Ling Y. H., Van N. T., Priebe W., Perez-Soler R. (1994). Antitumor activity of free and liposome-entrapped annamycin, a lipophilic anthracycline antibiotic with non-cross-resistance properties. Cancer Res.54, 1479–1484. [PubMed] [Google Scholar]