Liposomal studies

  1. Allen T. M. (1994). Long-circulating (sterically stabilized) liposomes for targeted drug deliveryTrends Pharmacol. Sci. 15, 215–220. 10.1016/0165-6147(94)90314-X [PubMed] [CrossRef[]
  2. Allen T. M., Cullis P. R. (2004). Drug delivery systems: entering the mainstreamScience 303, 1818–1822. 10.1126/science.1095833 [PubMed] [CrossRef[]
  3. Allen T. M., Cullis P. R. (2013). Liposomal drug delivery systems: from concept to clinical applicationsAdv. Drug Deliv. Rev65, 36–48. 10.1016/j.addr.2012.09.037 [PubMed] [CrossRef[]
  4. Andresen T. L., Davidsen J., Begtrup M., Mouritsen O. G., Jørgensen K. (2004). Enzymatic release of antitumor ether lipids by specific phospholipase A2 activation of liposome-forming prodrugsJ. Med. Chem. 47, 1694–1703. 10.1021/jm031029r [PubMed] [CrossRef[]
  5. Antohe F., Lin L., Kao G. Y., Poznansky M. J., Allen T. M. (2004). Transendothelial movement of liposomes in vitro mediated by cancer cells, neutrophils or histamineJ. Liposome Res. 14, 1–25. 10.1081/LPR-120039660 [PubMed] [CrossRef[]
  6. Antoni L., Nuding S., Wehkamp J., Stange E. F. (2014). Intestinal barrier in inflammatory bowel diseaseWorld J. Gastroenterol. 20, 1165–1179. 10.3748/wjg.v20.i5.1165 [PMC free article] [PubMed] [CrossRef[]
  7. Awada A., Bondarenko I. N., Bonneterre J., Nowara E., Ferrero J. M., Bakshi A. V., et al. . (2014). A randomized controlled phase II trial of a novel composition of paclitaxel embedded into neutral and cationic lipids targeting tumor endothelial cells in advanced triple-negative breast cancer (TNBC)Ann. Oncol. 25, 824–831. 10.1093/annonc/mdu025 [PubMed] [CrossRef[]
  8. Bendas G. (2001). Immunoliposomes: a promising approach to targeting cancer therapyBioDrugs 15, 215–224. 10.2165/00063030-200115040-00002 [PubMed] [CrossRef[]
  9. Bibi S., Lattmann E., Mohammed A. R., Perrie Y. (2012). Trigger release liposome systems: local and remote controlled delivery? J. Microencapsul. 29, 262–276. 10.3109/02652048.2011.646330 [PubMed] [CrossRef[]
  10. Bozzuto G., Molinari A. (2015). Liposomes as nanomedical devicesInt. J. Nanomedicine 10, 975–999. 10.2147/IJN.S68861 [PMC free article] [PubMed] [CrossRef[]
  11. Campbell R. B., Fukumura D., Brown E. B., Mazzola L. M., Izumi Y., Jain R. K., et al. . (2002). Cationic charge determines the distribution of liposomes between the vascular and extravascular compartments of tumorsCancer Res. 62, 6831–6836. [PubMed[]
  12. Campbell R. B., Ying B., Kuesters G. M., Hemphill R. (2009). Fighting cancer: from the bench to bedside using second generation cationic liposomal therapeuticsJ. Pharm. Sci. 98, 411–429. 10.1002/jps.21458 [PubMed] [CrossRef[]
  13. Carlson M., Raab Y., Peterson C., Hällgren R., Venge P. (1999). Increased intraluminal release of eosinophil granule proteins EPO, ECP, EPX, and cytokines in ulcerative colitis and proctitis in segmental perfusionAm. J. Gastroenterol. 94, 1876–1883. 10.1111/j.1572-0241.1999.01223.x [PubMed] [CrossRef[]
  14. Chandrasekar P. (2008). Amphotericin B lipid complex: treatment of invasive fungal infections in patients refractory to or intolerant of amphotericin B deoxycholateTher. Clin. Risk Manag. 4, 1285–1294. [PMC free article] [PubMed[]
  15. Chang H. I., Yeh M. K. (2012). Clinical development of liposome-based drugs: formulation, characterization, and therapeutic efficacyInt. J. Nanomedicine 7, 49–60. 10.2147/IJN.S26766 [PMC free article] [PubMed] [CrossRef[]
  16. Chang T. C., Shiah H. S., Yang C. H., Yeh K. H., Cheng A. L., Shen B. N., et al. . (2015). Phase I study of nanoliposomal irinotecan (PEP02) in advanced solid tumor patientsCancer Chemother. Pharmacol. 75, 579–586. 10.1007/s00280-014-2671-x [PMC free article] [PubMed] [CrossRef[]
  17. Charron D. M., Chen J., Zheng G. (2015). Theranostic lipid nanoparticles for cancer medicineCancer Treat. Res. 166, 103–127. 10.1007/978-3-319-16555-4_5 [PubMed] [CrossRef[]
  18. Chrai S. S., Murari R., Ahmad I. (2002). Liposomes (a review) part two: drug delivery systemsBioPharm 17, 40–43. []
  19. Clancy J. P., Dupont L., Konstan M. W., Billings J., Fustik S., Goss C. H., et al. . (2013). Phase II studies of nebulised Arikace in CF patients with Pseudomonas aeruginosa infectionThorax 68, 818–825. 10.1136/thoraxjnl-2012-202230 [PMC free article] [PubMed] [CrossRef[]
  20. Coco R., Plapied L., Pourcelle V., Jérôme C., Brayden D. J., Schneider Y. J., et al. . (2013). Drug delivery to inflamed colon by nanoparticles: comparison of different strategiesInt. J. Pharm. 440, 3–12. 10.1016/j.ijpharm.2012.07.017 [PubMed] [CrossRef[]
  21. Cole J. T., Holland N. B. (2015). Multifunctional nanoparticles for use in theranostic applicationsDrug Deliv. Transl. Res. 5, 295–309. 10.1007/s13346-015-0218-2 [PubMed] [CrossRef[]
  22. Cullis P. R., Chonn A., Semple S. C. (1998). Interactions of liposomes and lipid-based carrier systems with blood proteins: relation to clearance behaviour in vivoAdv. Drug Deliv. Rev. 32, 3–17. [PubMed[]
  23. Dams E. T., Laverman P., Oyen W. J., Storm G., Scherphof G. L., van Der Meer J. W., et al. . (2000). Accelerated blood clearance and altered biodistribution of repeated injections of sterically stabilized liposomesJ. Pharmacol. Exp. Ther. 292, 1071–1079. [PubMed[]
  24. Dark G. G., Calvert A. H., Grimshaw R., Poole C., Swenerton K., Kaye S., et al. . (2005). Randomized trial of two intravenous schedules of the topoisomerase I inhibitor liposomal lurtotecan in women with relapsed epithelial ovarian cancer: a trial of the national cancer institute of Canada clinical trials groupJ. Clin. Oncol. 23, 1859–1866. 10.1200/JCO.2005.02.028 [PubMed] [CrossRef[]
  25. Dempsey P. W., Allison M. E., Akkaraju S., Goodnow C. C., Fearon D. T. (1996). C3d of complement as a molecular adjuvant: bridging innate and acquired immunityScience 271, 348–350. 10.1126/science.271.5247.348 [PubMed] [CrossRef[]
  26. Deshpande P. P., Biswas S., Torchilin V. P. (2013). Current trends in the use of liposomes for tumor targetingNanomedicine (Lond). 8, 1509–1528. 10.2217/nnm.13.118 [PMC free article] [PubMed] [CrossRef[]
  27. Dicheva B. M., ten Hagen T. L., Li L., Schipper D., Seynhaeve A. L., van Rhoon G. C., et al. . (2013). Cationic thermosensitive liposomes: a novel dual targeted heat-triggered drug delivery approach for endothelial and tumor cellsNano Lett. 13, 2324–2331. 10.1021/nl3014154 [PubMed] [CrossRef[]
  28. Dicheva B. M., ten Hagen T. L., Schipper D., Seynhaeve A. L., van Rhoon G. C., Eggermont A. M., et al. . (2014). Targeted and heat-triggered doxorubicin delivery to tumors by dual targeted cationic thermosensitive liposomesJ. Control. Release 195, 37–48. 10.1016/j.jconrel.2014.07.058 [PubMed] [CrossRef[]
  29. Ding B. S., Dziubla T., Shuvaev V. V., Muro S., Muzykantov V. R. (2006). Advanced drug delivery systems that target the vascular endotheliumMol. Interv. 6, 98–112. 10.1124/mi.6.2.7 [PubMed] [CrossRef[]
  30. Felgner P. L., Gadek T. R., Holm M., Roman R., Chan H. W., Wenz M., et al. . (1987). Lipofection: a highly efficient, lipid-mediated DNA-transfection procedureProc. Natl. Acad. Sci. U.S.A. 84, 7413–7417. 10.1073/pnas.84.21.7413 [PMC free article] [PubMed] [CrossRef[]
  31. Ferrari M. (2005). Nanovector therapeuticsCurr. Opin. Chem. Biol. 9, 343–346. 10.1016/j.cbpa.2005.06.001 [PubMed] [CrossRef[]
  32. Fetterly G. J., Grasela T. H., Sherman J. W., Dul J. L., Grahn A., Lecomte D., et al. . (2008). Pharmacokinetic/pharmacodynamic modeling and simulation of neutropenia during phase I development of liposome-entrapped paclitaxelClin. Cancer Res. 14, 5856–5863. 10.1158/1078-0432.CCR-08-1046 [PubMed] [CrossRef[]
  33. Gabizon A. A., Barenholz Y., Bialer M. (1993). Prolongation of the circulation time of doxorubicin encapsulated in liposomes containing a polyethylene glycol-derivatized phospholipid: pharmacokinetic studies in rodents and dogsPharm. Res. 10, 703–708. 10.1023/A:1018907715905 [PubMed] [CrossRef[]
  34. Gabizon A., Catane R., Uziely B., Kaufman B., Safra T., Cohen R., et al. . (1994). Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomesCancer Res. 54, 987–992. [PubMed[]
  35. Gabizon A., Chisin R., Amselem S., Druckmann S., Cohen R., Goren D., et al. . (1991). Pharmacokinetic and imaging studies in patients receiving a formulation of liposome-associated adriamycinBr. J. Cancer 64, 1125–1132. 10.1038/bjc.1991.476 [PMC free article] [PubMed] [CrossRef[]
  36. Gabizon A., Dagan A., Goren D., Barenholz Y., Fuks Z. (1982). Liposomes as in vivo carriers of adriamycin: reduced cardiac uptake and preserved antitumor activity in miceCancer Res. 42, 4734–4739. [PubMed[]
  37. Gabizon A., Horowitz A. T., Goren D., Tzemach D., Shmeeda H., Zalipsky S. (2003). In vivo fate of folate-targeted polyethylene-glycol liposomes in tumor-bearing miceClin. Cancer Res. 9, 6551–6559. [PubMed[]
  38. Gabizon A., Tzemach D., Mak L., Bronstein M., Horowitz A. T. (2002). Dose dependency of pharmacokinetics and therapeutic efficacy of pegylated liposomal doxorubicin (DOXIL) in murine modelsJ. Drug Target10, 539–548. 10.1080/1061186021000072447 [PubMed] [CrossRef[]
  39. Geng S., Yang B., Wang G., Qin G., Wada S., Wang J. Y. (2014). Two cholesterol derivative-based PEGylated liposomes as drug delivery system, study on pharmacokinetics and drug delivery to retinaNanotechnology 25:275103. 10.1088/0957-4484/25/27/275103 [PubMed] [CrossRef[]
  40. Giannella M., Ercolani G., Cristini F., Morelli M., Bartoletti M., Bertuzzo V., et al. . (2015). High-dose weekly liposomal amphotericin b antifungal prophylaxis in patients undergoing liver transplantation: a prospective phase II trialTransplantation 99, 848–854. 10.1097/TP.0000000000000393 [PubMed] [CrossRef[]
  41. Gross N., Ranjbar M., Evers C., Hua J., Martin G., Schulze B., et al. . (2013). Choroidal neovascularization reduced by targeted drug delivery with cationic liposome-encapsulated paclitaxel or targeted photodynamic therapy with verteporfin encapsulated in cationic liposomesMol. Vis. 19, 54–61. [PMC free article] [PubMed[]
  42. Guo X., Szoka F. C., Jr. (2003). Chemical approaches to triggerable lipid vesicles for drug and gene deliveryAcc. Chem. Res. 36, 335–341. 10.1021/ar9703241 [PubMed] [CrossRef[]
  43. Han X. J., Wei Y. F., Wan Y. Y., Jiang L. P., Zhang J. F., Xin H. B. (2014). Development of a novel liposomal nanodelivery system for bioluminescence imaging and targeted drug delivery in ErbB2-overexpressing metastatic ovarian carcinomaInt. J. Mol. Med. 34, 1225–1232. 10.3892/ijmm.2014.1922 [PMC free article] [PubMed] [CrossRef[]
  44. Hashizume H., Baluk P., Morikawa S., McLean J. W., Thurston G., Roberge S., et al. . (2000). Openings between defective endothelial cells explain tumor vessel leakinessAm. J. Pathol. 156, 1363–1380. 10.1016/S0002-9440(10)65006-7 [PMC free article] [PubMed] [CrossRef[]
  45. Hua S. (2013). Targeting sites of inflammation: intercellular adhesion molecule-1 as a target for novel inflammatory therapiesFront. Pharmacol. 4:127. 10.3389/fphar.2013.00127 [PMC free article] [PubMed] [CrossRef[]
  46. Hua S., Cabot P. J. (2013). Targeted nanoparticles that mimic immune cells in pain control inducing analgesic and anti-inflammatory actions: a potential novel treatment of acute and chronic pain conditionPain Physician16, E199–E216. [PubMed[]
  47. Hua S., Marks E., Schneider J. J., Keely S. (2015). Advances in oral nano-delivery systems for colon targeted drug delivery in inflammatory bowel disease: selective targeting to diseased versus healthy tissueNanomedicine 11, 1117–1132. 10.1016/j.nano.2015.02.018 [PubMed] [CrossRef[]
  48. Hua S., Wu S. Y. (2013). The use of lipid-based nanocarriers for targeted pain therapiesFront. Pharmacol. 4:143. 10.3389/fphar.2013.00143 [PMC free article] [PubMed] [CrossRef[]
  49. Immordino M. L., Dosio F., Cattel L. (2006). Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potentialInt. J. Nanomedicine 1, 297–315. [PMC free article] [PubMed[]
  50. Ishida T., Harada M., Wang X. Y., Ichihara M., Irimura K., Kiwada H. (2005). Accelerated blood clearance of PEGylated liposomes following preceding liposome injection: effects of lipid dose and PEG surface-density and chain length of the first-dose liposomesJ. Control. Release 105, 305–317. 10.1016/j.jconrel.2005.04.003 [PubMed] [CrossRef[]
  51. Ishida T., Harashima H., Kiwada H. (2001a). Interactions of liposomes with cells in vitro and in vivo: opsonins and receptorsCurr. Drug Metab. 2, 397–409. 10.2174/1389200013338306 [PubMed] [CrossRef[]
  52. Ishida T., Ichihara M., Wang X., Kiwada H. (2006a). Spleen plays an important role in the induction of accelerated blood clearance of PEGylated liposomesJ. Control. Release 115, 243–250. 10.1016/j.jconrel.2006.08.001 [PubMed] [CrossRef[]
  53. Ishida T., Ichihara M., Wang X., Yamamoto K., Kimura J., Majima E., et al. . (2006b). Injection of PEGylated liposomes in rats elicits PEG-specific IgM, which is responsible for rapid elimination of a second dose of PEGylated liposomesJ. Control. Release 112, 15–25. 10.1016/j.jconrel.2006.01.005 [PubMed] [CrossRef[]
  54. Ishida T., Kirchmeier M. J., Moase E. H., Zalipsky S., Allen T. M. (2001b). Targeted delivery and triggered release of liposomal doxorubicin enhances cytotoxicity against human B lymphoma cellsBiochim. Biophys. Acta 1515, 144–158. 10.1016/S0005-2736(01)00409-6 [PubMed] [CrossRef[]
  55. Ishida T., Kiwada H. (2008). Accelerated blood clearance (ABC) phenomenon upon repeated injection of PEGylated liposomesInt. J. Pharm. 354, 56–62. 10.1016/j.ijpharm.2007.11.005 [PubMed] [CrossRef[]
  56. Ishida T., Masuda K., Ichikawa T., Ichihara M., Irimura K., Kiwada H. (2003). Accelerated clearance of a second injection of PEGylated liposomes in miceInt. J. Pharm. 255, 167–174. 10.1016/S0378-5173(03)00085-1 [PubMed] [CrossRef[]
  57. Jaafar-Maalej C., Elaissari A., Fessi H. (2012). Lipid-based carriers: manufacturing and applications for pulmonary routeExpert Opin. Drug Deliv. 9, 1111–1127. 10.1517/17425247.2012.702751 [PubMed] [CrossRef[]
  58. Jahn F., Jordan K., Behlendorf T., Globig C., Schmoll H. J., Müller-Tidow C., et al. . (2015). Safety and efficacy of liposomal cytarabine in the treatment of neoplastic meningitisOncology 89, 137–142. 10.1159/000380913 [PubMed] [CrossRef[]
  59. Kirpotin D. B., Drummond D. C., Shao Y., Shalaby M. R., Hong K., Nielsen U. B., et al. . (2006). Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal modelsCancer Res. 66, 6732–6740. 10.1158/0008-5472.CAN-05-4199 [PubMed] [CrossRef[]
  60. Kirpotin D., Park J. W., Hong K., Zalipsky S., Li W. L., Carter P., et al. . (1997). Sterically stabilized anti-HER2 immunoliposomes: design and targeting to human breast cancer cells in vitroBiochem. Mosc. 36, 66–75. 10.1021/bi962148u [PubMed] [CrossRef[]
  61. Klimuk S. K., Semple S. C., Scherrer P., Hope M. J. (1999). Contact hypersensitivity: a simple model for the characterization of disease-site targeting by liposomesBiochim. Biophys. Acta 1417, 191–201. 10.1016/S0005-2736(98)00261-2 [PubMed] [CrossRef[]
  62. Koning G. A., Storm G. (2003). Targeted drug delivery systems for the intracellular delivery of macromolecular drugsDrug Discov. Today 8, 482–483. 10.1016/S1359-6446(03)02699-0 [PubMed] [CrossRef[]
  63. Kono K. (2001). Thermosensitive polymer-modified liposomesAdv. Drug Deliv. Rev. 53, 307–319. 10.1016/S0169-409X(01)00204-6 [PubMed] [CrossRef[]
  64. Kraft J. C., Freeling J. P., Wang Z., Ho R. J. (2014). Emerging research and clinical development trends of liposome and lipid nanoparticle drug delivery systemsJ. Pharm. Sci. 103, 29–52. 10.1002/jps.23773 [PMC free article] [PubMed] [CrossRef[]
  65. Kunstfeld R., Wickenhauser G., Michaelis U., Teifel M., Umek W., Naujoks K., et al. . (2003). Paclitaxel encapsulated in cationic liposomes diminishes tumor angiogenesis and melanoma growth in a “humanized” SCID mouse modelJ. Invest. Dermatol. 120, 476–482. 10.1046/j.1523-1747.2003.12057.x [PubMed] [CrossRef[]
  66. Larsson J. M., Karlsson H., Sjövall H., Hansson G. C. (2009). A complex, but uniform O-glycosylation of the human MUC2 mucin from colonic biopsies analyzed by nanoLC/MSnGlycobiology 19, 756–766. 10.1093/glycob/cwp048 [PubMed] [CrossRef[]
  67. Laverman P., Boerman O. C., Oyen W. J., Dams E. T., Storm G., Corstens F. H. (1999). Liposomes for scintigraphic detection of infection and inflammationAdv. Drug Deliv. Rev. 37, 225–235. [PubMed[]
  68. Laverman P., Carstens M. G., Storm G., Moghimi S. M. (2001). Recognition and clearance of methoxypoly(ethyleneglycol)2000-grafted liposomes by macrophages with enhanced phagocytic capacity. Implications in experimental and clinical oncologyBiochim. Biophys. Acta 1526, 227–229. 10.1016/S0304-4165(01)00142-8 [PubMed] [CrossRef[]
  69. Löhr J. M., Haas S. L., Bechstein W. O., Bodoky G., Cwiertka K., Fischbach W., et al. . (2012). Cationic liposomal paclitaxel plus gemcitabine or gemcitabine alone in patients with advanced pancreatic cancer: a randomized controlled phase II trialAnn. Oncol. 23, 1214–1222. 10.1093/annonc/mdr379 [PubMed] [CrossRef[]
  70. Lv H., Zhang S., Wang B., Cui S., Yan J. (2006). Toxicity of cationic lipids and cationic polymers in gene deliveryJ. Control. Release 114, 100–109. 10.1016/j.jconrel.2006.04.014 [PubMed] [CrossRef[]
  71. Lyass O., Uziely B., Ben-Yosef R., Tzemach D., Heshing N. I., Lotem M., et al. . (2000). Correlation of toxicity with pharmacokinetics of pegylated liposomal doxorubicin (Doxil) in metastatic breast carcinomaCancer 89, 1037–1047. 10.1002/1097-0142(20000901)89:5<1037::AID-CNCR13>3.0.CO;2-Z [PubMed] [CrossRef[]
  72. Mangala L. S., Han H. D., Lopez-Berestein G., Sood A. K. (2009). Liposomal siRNA for ovarian cancerMethods Mol. Biol. 555, 29–42. 10.1007/978-1-60327-295-7_3 [PubMed] [CrossRef[]
  73. Maruyama K. (2002). PEG-immunoliposomeBiosci. Rep. 22, 251–266. 10.1023/A:1020138622686 [PubMed] [CrossRef[]
  74. Metselaar J. M., Storm G. (2005). Liposomes in the treatment of inflammatory disordersExpert Opin. Drug Deliv. 465–76 10.1517/17425247.2.3.465 [PubMed] [CrossRef[]
  75. Moghimi S. M., Hamad I., Andresen T. L., Jørgensen K., Szebeni J. (2006). Methylation of the phosphate oxygen moiety of phospholipid-methoxy(polyethylene glycol) conjugate prevents PEGylated liposome-mediated complement activation and anaphylatoxin productionFASEB J. 20, 2591–2593. 10.1096/fj.06-6186fje [PubMed] [CrossRef[]
  76. Moghimi S. M., Hunter A. C. (2001). Capture of stealth nanoparticles by the body’s defencesCrit. Rev. Ther. Drug Carrier Syst. 18, 527–550. 10.1615/CritRevTherDrugCarrierSyst.v18.i6.30 [PubMed] [CrossRef[]
  77. Moghimi S. M., Szebeni J. (2003). Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding propertiesProg. Lipid Res. 42, 463–478. 10.1016/S0163-7827(03)00033-X [PubMed] [CrossRef[]
  78. Monteiro N., Martins A., Reis R. L., Neves N. M. (2014). Liposomes in tissue engineering and regenerative medicineJ. R. Soc. Interface 11:20140459. 10.1098/rsif.2014.0459 [PMC free article] [PubMed] [CrossRef[]
  79. Murday J. S., Siegel R. W., Stein J., Wright J. F. (2009). Translational nanomedicine: status assessment and opportunitiesNanomedicine 5, 251–273. 10.1016/j.nano.2009.06.001 [PubMed] [CrossRef[]
  80. Narang A. S., Chang R. K., Hussain M. A. (2013). Pharmaceutical development and regulatory considerations for nanoparticles and nanoparticulate drug delivery systemsJ. Pharm. Sci. 102, 3867–3882. 10.1002/jps.23691 [PubMed] [CrossRef[]
  81. Needham D., Anyarambhatla G., Kong G., Dewhirst M. W. (2000). A new temperature-sensitive liposome for use with mild hyperthermia: characterization and testing in a human tumor xenograft modelCancer Res. 60, 1197–1201. [PubMed[]
  82. Nehoff H., Parayath N. N., Domanovitch L., Taurin S., Greish K. (2014). Nanomedicine for drug targeting: strategies beyond the enhanced permeability and retention effectInt. J. Nanomedicine 9, 2539–2555. 10.2147/IJN.S47129 [PMC free article] [PubMed] [CrossRef[]
  83. Ning Y. M., He K., Dagher R., Sridhara R., Farrell A. T., Justice R., et al. . (2007). Liposomal doxorubicin in combination with bortezomib for relapsed or refractory multiple myelomaOncology (Williston Park) 21, 1503–1508. discussion: 11, 13, 16 passim. [PubMed[]
  84. Noble C. O., Kirpotin D. B., Hayes M. E., Mamot C., Hong K., Park J. W., et al. . (2004). Development of ligand-targeted liposomes for cancer therapyExpert Opin. Ther. Targets 8, 335–353. 10.1517/14728222.8.4.335 [PubMed] [CrossRef[]
  85. Northfelt D. W., Martin F. J., Working P., Volberding P. A., Russell J., Newman M., et al. . (1996). Doxorubicin encapsulated in liposomes containing surface-bound polyethylene glycol: pharmacokinetics, tumor localization, and safety in patients with AIDS-related Kaposi’s sarcomaJ. Clin. Pharmacol. 36, 55–63. 10.1002/j.1552-4604.1996.tb04152.x [PubMed] [CrossRef[]
  86. Offner F., Krcmery V., Boogaerts M., Doyen C., Engelhard D., Ribaud P., et al. . (2004). Liposomal nystatin in patients with invasive aspergillosis refractory to or intolerant of amphotericin BAntimicrob. Agents Chemother. 48, 4808–4812. 10.1128/AAC.48.12.4808-4812.2004 [PMC free article] [PubMed] [CrossRef[]
  87. Oku N., Namba Y. (1994). Long-circulating liposomesCrit. Rev. Ther. Drug Carrier Syst. 11, 231–270. [PubMed[]
  88. Olivier K. N., Shaw P. A., Glaser T. S., Bhattacharyya D., Fleshner M., Brewer C. C., et al. . (2014). Inhaled amikacin for treatment of refractory pulmonary nontuberculous mycobacterial diseaseAnn. Am. Thorac. Soc. 11, 30–35. 10.1513/AnnalsATS.201307-231OC [PMC free article] [PubMed] [CrossRef[]
  89. Ozpolat B., Lopez-Berestein G., Adamson P., Fu C. J., Williams A. H. (2003). Pharmacokinetics of intravenously administered liposomal all-trans-retinoic acid (ATRA) and orally administered ATRA in healthy volunteersJ. Pharm. Pharm. Sci. 6, 292–301. [PubMed[]
  90. Park J. W., Hong K., Kirpotin D. B., Colbern G., Shalaby R., Baselga J., et al. . (2002). Anti-HER2 immunoliposomes: enhanced efficacy attributable to targeted deliveryClin. Cancer Res. 8, 1172–1181. [PubMed[]
  91. Peterson C. G., Eklund E., Taha Y., Raab Y., Carlson M. (2002). A new method for the quantification of neutrophil and eosinophil cationic proteins in feces: establishment of normal levels and clinical application in patients with inflammatory bowel diseaseAm. J. Gastroenterol. 97, 1755–1762. 10.1111/j.1572-0241.2002.05837.x [PubMed] [CrossRef[]
  92. Ponce A. M., Vujaskovic Z., Yuan F., Needham D., Dewhirst M. W. (2006). Hyperthermia mediated liposomal drug deliveryInt. J. Hyperthermia 22, 205–213. 10.1080/02656730600582956 [PubMed] [CrossRef[]
  93. Poste G., Papahadjopoulos D., Vail W. J. (1976). Lipid vesicles as carriers for introducing biologically active materials into cellsMethods Cell Biol. 14, 33–71. 10.1016/S0091-679X(08)60468-9 [PubMed] [CrossRef[]
  94. Puri A., Loomis K., Smith B., Lee J. H., Yavlovich A., Heldman E., et al. . (2009). Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinicCrit. Rev. Ther. Drug Carrier Syst. 26, 523–580. 10.1615/CritRevTherDrugCarrierSyst.v26.i6.10 [PMC free article] [PubMed] [CrossRef[]
  95. Rahman A. M., Yusuf S. W., Ewer M. S. (2007). Anthracycline-induced cardiotoxicity and the cardiac-sparing effect of liposomal formulationInt. J. Nanomedicine 2, 567–583. [PMC free article] [PubMed[]
  96. Ran S., Downes A., Thorpe P. E. (2002). Increased exposure of anionic phospholipids on the surface of tumor blood vesselsCancer Res. 62, 6132–6140. [PubMed[]
  97. Riehemann K., Schneider S. W., Luger T. A., Godin B., Ferrari M., Fuchs H. (2009). Nanomedicine–challenge and perspectivesAngew. Chem. Int. Ed Engl. 48, 872–897. 10.1002/anie.200802585 [PMC free article] [PubMed] [CrossRef[]
  98. Rip J., Chen L., Hartman R., van den Heuvel A., Reijerkerk A., van Kregten J., et al. . (2014). Glutathione PEGylated liposomes: pharmacokinetics and delivery of cargo across the blood-brain barrier in ratsJ. Drug Target. 22, 460–467. 10.3109/1061186X.2014.888070 [PMC free article] [PubMed] [CrossRef[]
  99. Sapra P., Allen T. M. (2003). Ligand-targeted liposomal anticancer drugsProg. Lipid Res. 42, 439–462. 10.1016/S0163-7827(03)00032-8 [PubMed] [CrossRef[]
  100. Sawant R. R., Torchilin V. P. (2012). Challenges in development of targeted liposomal therapeuticsAAPS J. 14, 303–315. 10.1208/s12248-012-9330-0 [PMC free article] [PubMed] [CrossRef[]
  101. Schmitt C. J., Dietrich S., Ho A. D., Witzens-Harig M. (2012). Replacement of conventional doxorubicin by pegylated liposomal doxorubicin is a safe and effective alternative in the treatment of non-Hodgkin’s lymphoma patients with cardiac risk factorsAnn. Hematol. 91, 391–397. 10.1007/s00277-011-1308-y [PubMed] [CrossRef[]
  102. Seiden M. V., Muggia F., Astrow A., Matulonis U., Campos S., Roche M., et al. . (2004). A phase II study of liposomal lurtotecan (OSI-211) in patients with topotecan resistant ovarian cancerGynecol. Oncol. 93, 229–232. 10.1016/j.ygyno.2003.12.037 [PubMed] [CrossRef[]
  103. Senior J. H. (1987). Fate and behavior of liposomes in vivo: a review of controlling factorsCrit. Rev. Ther. Drug Carrier Syst. 3, 123–193. [PubMed[]
  104. Storm G., ten Kate M. T., Working P. K., Bakker-Woudenberg I. A. (1998). Doxorubicin entrapped in sterically stabilized liposomes: effects on bacterial blood clearance capacity of the mononuclear phagocyte systemClin. Cancer Res. 4, 111–115. [PubMed[]
  105. Suenaga M., Mizunuma N., Matsusaka S., Shinozaki E., Ozaka M., Ogura M., et al. . (2015). Phase II study of reintroduction of oxaliplatin for advanced colorectal cancer in patients previously treated with oxaliplatin and irinotecan: RE-OPEN studyDrug Des. Devel. Ther. 9, 3099–3108. 10.2147/DDDT.S85567 [PMC free article] [PubMed] [CrossRef[]
  106. Szebeni J. (2005). Complement activation-related pseudoallergy: a new class of drug-induced acute immune toxicityToxicology 216, 106–121. 10.1016/j.tox.2005.07.023 [PubMed] [CrossRef[]
  107. Szebeni J., Alving C. R., Rosivall L., Bünger R., Baranyi L., Bedöcs P., et al. . (2007). Animal models of complement-mediated hypersensitivity reactions to liposomes and other lipid-based nanoparticlesJ. Liposome Res. 17, 107–117. 10.1080/08982100701375118 [PubMed] [CrossRef[]
  108. Szebeni J., Barenholz Y. (2009). Adverse immune effects of liposomes: complement activation, immunogenicity and immune suppression, in Harnessing Biomaterials for Nanomedicine: Preparation, Toxicity and Applications, ed P. S. Publishing (Singapore: Pan Stanford Publishing; ), 1–19. []
  109. Szebeni J., Fontana J. L., Wassef N. M., Mongan P. D., Morse D. S., Dobbins D. E., et al. . (1999). Hemodynamic changes induced by liposomes and liposome-encapsulated hemoglobin in pigs: a model for pseudoallergic cardiopulmonary reactions to liposomes. Role of complement and inhibition by soluble CR1 and anti-C5a antibodyCirculation 99, 2302–2309. 10.1161/01.CIR.99.17.2302 [PubMed] [CrossRef[]
  110. Szebeni J., Moghimi S. M. (2009). Liposome triggering of innate immune responses: a perspective on benefits and adverse reactionsJ. Liposome Res. 19, 85–90. 10.1080/08982100902792855 [PubMed] [CrossRef[]
  111. Teli M. K., Mutalik S., Rajanikant G. K. (2010). Nanotechnology and nanomedicine: going small means aiming bigCurr. Pharm. Des. 16, 1882–1892. 10.2174/138161210791208992 [PubMed] [CrossRef[]
  112. Tinkle S., McNeil S. E., Mühlebach S., Bawa R., Borchard G., Barenholz Y. C., et al. . (2014). Nanomedicines: addressing the scientific and regulatory gapAnn. N.Y. Acad. Sci. 1313, 35–56. 10.1111/nyas.12403 [PubMed] [CrossRef[]
  113. Tirosh B., Khatib N., Barenholz Y., Nissan A., Rubinstein A. (2009). Transferrin as a luminal target for negatively charged liposomes in the inflamed colonic mucosaMol. Pharm. 6, 1083–1091. 10.1021/mp9000926 [PubMed] [CrossRef[]
  114. Torchilin V. P. (1994). Immunoliposomes and PEGylated immunoliposomes: possible use for targeted delivery of imaging agentsImmunomethods 4, 244–258. 10.1006/immu.1994.1027 [PubMed] [CrossRef[]
  115. Torchilin V. P., Klibanov A. L., Huang L., O’Donnell S., Nossiff N. D., Khaw B. A. (1992). Targeted accumulation of polyethylene glycol-coated immunoliposomes in infarcted rabbit myocardiumFASEB J. 6, 2716–2719. [PubMed[]
  116. Ulrich A. S. (2002). Biophysical aspects of using liposomes as delivery vehiclesBiosci. Rep. 22, 129–150. 10.1023/A:1020178304031 [PubMed] [CrossRef[]
  117. Vingerhoeds M. H., Storm G., Crommelin D. J. (1994). Immunoliposomes in vivoImmunomethods 4, 259–272. 10.1006/immu.1994.1028 [PubMed] [CrossRef[]
  118. Wang X., Song Y., Su Y., Tian Q., Li B., Quan J., et al. (2015). Are PEGylated liposomes better than conventional liposomes? A special case for vincristineDrug Deliv. 29, 1–9. 10.3109/10717544.2015.1027015 [PubMed] [CrossRef[]
  119. Webb M. S., Saxon D., Wong F. M., Lim H. J., Wang Z., Bally M. B., et al. . (1998). Comparison of different hydrophobic anchors conjugated to poly(ethylene glycol): effects on the pharmacokinetics of liposomal vincristineBiomembranes 1372, 272–282. 10.1016/S0005-2736(98)00077-7 [PubMed] [CrossRef[]
  120. Wetzler M., Thomas D. A., Wang E. S., Shepard R., Ford L. A., Heffner T. L., et al. . (2013). Phase I/II trial of nanomolecular liposomal annamycin in adult patients with relapsed/refractory acute lymphoblastic leukemiaClin. Lymphoma Myeloma Leuk. 13, 430–434. 10.1016/j.clml.2013.03.015 [PMC free article] [PubMed] [CrossRef[]
  121. Willis M., Forssen E. (1998). Ligand-targeted liposomesAdv. Drug Deliv. Rev. 29, 249–271. 10.1016/S0169-409X(97)00083-5 [PubMed] [CrossRef[]
  122. Wu J., Lee A., Lu Y., Lee R. J. (2007). Vascular targeting of doxorubicin using cationic liposomesInt. J. Pharm. 337, 329–335. 10.1016/j.ijpharm.2007.01.003 [PubMed] [CrossRef[]
  123. Yarmolenko P. S., Zhao Y., Landon C., Spasojevic I., Yuan F., Needham D., et al. . (2010). Comparative effects of thermosensitive doxorubicin-containing liposomes and hyperthermia in human and murine tumoursInt. J. Hyperthermia 26, 485–498. 10.3109/02656731003789284 [PMC free article] [PubMed] [CrossRef[]
  124. Zamboni W. C., Ramalingam S., Friedland D. M., Edwards R. P., Stoller R. G., Strychor S., et al. . (2009). Phase I and pharmacokinetic study of pegylated liposomal CKD-602 in patients with advanced malignanciesClin. Cancer Res. 15, 1466–1472. 10.1158/1078-0432.CCR-08-1405 [PMC free article] [PubMed] [CrossRef[]
  125. Zhang H., Wang G., Yang H. (2011). Drug delivery systems for differential release in combination therapyExpert Opin. Drug Deliv. 8, 171–190. 10.1517/17425247.2011.547470 [PubMed] [CrossRef[]
  126. Zhang J. A., Anyarambhatla G., Ma L., Ugwu S., Xuan T., Sardone T., et al. . (2005). Development and characterization of a novel Cremophor EL free liposome-based paclitaxel (LEP-ETU) formulationEur. J. Pharm. Biopharm. 59, 177–187. 10.1016/j.ejpb.2004.06.009 [PubMed] [CrossRef[]
  127. Zhang J. A., Xuan T., Parmar M., Ma L., Ugwu S., Ali S., et al. . (2004). Development and characterization of a novel liposome-based formulation of SN-38Int. J. Pharm. 270, 93–107. 10.1016/j.ijpharm.2003.10.015 [PubMed] [CrossRef[]
  128. Zhang L., Gu F. X., Chan J. M., Wang A. Z., Langer R. S., Farokhzad O. C. (2008). Nanoparticles in medicine: therapeutic applications and developmentsClin. Pharmacol. Ther. 83, 761–769. 10.1038/sj.clpt.6100400 [PubMed] [CrossRef[]
  129. Zou Y., Ling Y. H., Van N. T., Priebe W., Perez-Soler R. (1994). Antitumor activity of free and liposome-entrapped annamycin, a lipophilic anthracycline antibiotic with non-cross-resistance propertiesCancer Res. 54, 1479–1484. [PubMed[]